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In the first paper for the Hydrodynamical Section of this Symposium about
Analytic Functions in Continuum Mechanics I like to return to an early and
famous application in classical hydrodynamics made by W.M. Kutta and N.E.
Zhukovskil while studying the 1ift force created in two-dimensional flow by

a perfect fluid. The doubly connected region around a single profile in the
infinite plane allows for & circulatory motion, the intensity of which is
not determined by immediate boundary conditions. Nevertheless both these
authors selected the same conditlon of smooth flow at the sharp tralling edge
of either the flat plate {Kutta) or the special series of sharply edged Zhu~-
kovskii profiles as the proper lift-controlling element for the perfect flow,
generally known as the "Kutta-Zhukovskii Condition". 'The smooth flow, how-
ever plausible it may appear, can only be a conjecture within the theory of
perfect flulds and the rigorous proof resulting from flow problems with
vanishing viscoslity was added scon after by the boundary-layer theory of

L. Prandtl.

A similar problem is found in the modern magnetohydrodynamics of two
dimensions with a fluld having two properties to perfection, that is,vanish-
ing viscosity paired with vanishing electrical resistivity while an external
magnetic field 1s spead throughout the whole flow fleld. Regarding the dis-
tribution of two fields, the velocity and the magnetic vectors, 1t may appear
that there are also two circulations, around the profille undermined, but, as
is easy to conceive, these two circulations are fortunately tied to each
other and only one combined circulation remains open and 1s responsible for
any side force or lift. Unfortunately the simplified treatment adopted in
this paper is a linecarlzed approach to any lift-controlling elements of the
body shape. Therefore, the ease to find a large variety of illustrative
examples must be relled upon to hope that the linearized method may 1llumi-
nate the problem sufficiently to disclose the magnetohydrodynamical gener-
alization of the Kutta-Zhukovskil as a similarly plausible conjecture.

In this paper, a short derivation of the differential equations and final-
ly their specialization to two-dimensional flow will be given. Immediately
thereafter, the general sclution will be produced just as in my von Kérman
80th Anniversary Lecture, 1961. It 1s exactly this step that led me to
believe that its discussion at this Symposium might be appropriate. After
showing a couple of examples in figures and pointing out their essential
features, some conclusions about the lift-controlling elements will be added.
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1. Differsntial equations, For the sole purpose of showing the changes
of the Kutta-Zhukovskil 1ift problem by electromagnetic interaction, it is
permissible to take the name magnetohydrodynamics literally by assuming an
incompressible fluid with a constant electric conductivity value regarded
as a scalar quantity. The essential and, in the end, the only remaining
variables of the flow field are the two vectors: the magnetic induction B
and the fluld velocity V . Both these vector fields have lost part of their
generallty by the absence of divergences

divB = 0 (1.1)
divV =0 1.2)

the first equation being a natural property by selecting the magnetic in-
ductlons as the representative of the magnetic fileld strength, the second
equation belng a mere convenience resulting from the assumption of incom-
pressible fluid.

The square of both field vectors zp# and $pl® indicate in comnection
with the proper constants in a magnetically permeable and incompressible fluid
magnetic pressures and hydrodynamic pressures. Thils property makes them.
commensurable in the form of the Alfven speed EAqu compared with the velo-
eity ¥ . To simplify the equations, the density p and the permeablity u
are set equal to unity. Thus, the kinematic viscosity 1is the proper dissi-
pative constant in this system, whille for the kinematic "resistivity" of
electrical currents, the reciprocal conductivity has to be divided by the
permeability u k— _1“ (1.3)

Sp

The influence on the hydrodynamlc behavior of the movement across a mag-
netic fleld 1is caused by the so-called Lorentz forces of electrodynamicsand
thelr value £ per unit volume 1s dependent on the flow of an electrlc cur~

rent with the area lntensity J

f={xB (1.4)

however, any current reveals ltself by the curling magnetic fleld around it
according to Equations

j =culB (1.5)

In combining these two expressions, the L rentz forces immediately show
how they are anchored in the magnetic .fleld stress tensor B;By — 1/, 8;B?

f=(cul B)XB =B- ¢y B — 1/, B? (1.6)
These forces enter the hydrodynamic equation
f—grad p, = 5 + V.gV — vV (1.7

The magnetic pressure p,, the gradlent of which is visible in the last
term of Equations (1.6),offers a summation with the static pressure p, to
the combined pressure p as indlcated
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P=pnt pmn=pn+Y,B? (1.8)
the gradient of which is simply
-—-gradp=(—;9{+V-V—VY72)V—(B‘V)B (1.9)

In the absence of imposed electric fields all currents J are caused by
induction in the fluld moving across the magnetic field or vice versa, Closed
currents are already assured when firstly the curl of the inducted electric
field B, 1s used*

B
curl Eh:= curl (V X B) — ¥ {1.10)
and secondly the electrlc resistivity » of the fluid is a constant
P dB
curl E = x curl j = curl{Vx B) — - (1.11)

Avolding again the explicit appearance of the currents or the electric
field, a relation between the magnetic fleld and the velocity fleld results
out of Equation {1.11) combined with (1.5)

xcurl curlB =curl(V x B) — %I-i- (1.12)

After the usual transformation of all double cross products into two terms
of dot products, while considering that all divergences vanish according to
Equations (1.1) and (1.2), the same relation can be written

aB
—x'B=ByV—-V.yB— (1.13)

All differential operations except one are carrled out on the magnetic

field., Two operator packages 1n parentheses show this fact more clearly

(%+v.v_xv2)Bm(B-v)V= 0 (1.14)

Thils final form of electromagnetlic equatlon has a strange resemblance to
the final hydrodynamic equation {1.9). The third terms of the large opera-
tors differ only by thelr diffusion coefficients which are the viscosity v
in hydrodynamics and the resistivity x 1in electronagnetism. If such a
difference, which of course disappears for perfect flulds, should cause too
much trouble, there is always the possibllity of finding a first solution
for the fluld with v = » or the "equi-dissipative" fluid.

2. Linearisation, Any differential operator parenthesis used in the
final equations {1.9) and (1.14) contains a term nhaving one of the unknown
field vectors as a coefficient, as a reminder of the nonlinearity of both
relations. In these terms lies the actual difficulty of solving the complete

The invariant field z,, 1s related to the Cartesian &, as follows:
Ein =E.u T VXE
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problem by finding partlicular solutions. However, such an approach can be
used after linearization of the differential equations for small disturbance
flows. Since all terms in the operators represent partial differentiations
with respect to space or time, an undisturbed pattern consisting of a paral-
lel flow and a parallel magnetic field — though in different directions, if
preferred — vanishes ldentically 1f operated upon regardless of any unknown
field used inside the operators. Under these circumstances the linearization
requires the unknown disturbance fields to be always the object of the
operations; whlle the fleld inside the operators may as well be the una-

dulterated undisturbed one.

If we designate with the former letters V and B the main fields and
use for the disturbances v and b as small additions to the parallel
fields, the operators in equations (1.9) and (1.14) are practically differ-
ential operators with filxed coefficients in which the field vectors V and
B are considered to be the values Vw and B, sufficiently far away from
the disturbing body, without belng explicitly designated as such by a sub-
script. This linearization ailows the operators to be treated as commuting
factors as long as they operate on the same field v or b . The new form
of Equations (1.9} and (1.14) due to linearization is

(5 + Vv —ve*) v —(B:v) b =— gradp (2.1)
(..g_t +V.g —x .\72) b—(B-g)v=20 (2.2)

The early equations {1.1) and (1.2) adapted to the new symbols for the
disturbance flelds are

divb =0, divv =0 (2.3)

It 1s obvious that these four equatlons, half of which are scalar eguations
while the other half are vectors with the disturbance function p , have
enough information to &llow the unknown fields tc be determined.

3. Redustion to two dimensions. Since the best hope of finding solutions
is given in the two-dimensional flow, the further treatment of these equations
is carried out in the complex plane in accord with Kutta and Zhukovskii.

The first convenlence resulting from the reduction to two dimensions 1s the
existence of a scalar flux function ¢ for the magnetic fleld P and a
scalar stream function ﬂ) for the velocity fleld as integrals of Equations
(2.3). In complex plane z = x + {y Wlth z =x — {y the nabla operator
1s known to be _2_

dz
of any function written in the variables z and 2z . While a gradient can
immediately be written in nabla, the relatlion between flux functiens or

v =2

stream functions and the vector field parallel to them only requires a multi-
plier + { to perform & rotation about #+ 90°. The vector fields are,
therefore, easlly related to their flux integrals
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o O .n O
b=—-12—: @, V == e 12'-: 'q) (3.1)
Jz 9z
While Equation (2.2) may be ralsed to the flux function level

(5‘%—+V-v—xv2)¢—(3-v)\b=0 (3.2)

the right~hand side of Equation (2.1) is not quite suilted to this treaument.
But the vanishing divergences of v and b spotted on the left-hand side
disclose p to be an analytic function in the whole domain outside the

body divgrad p = 0 (3.3)

If this fact is appreclated, the pressure p must be real part of a com-
plex "pressure" function =

p+ig==n(z21 (3:4)

Since p and its complex conjugate g carry the same information, it is
simple to concelve that ¢ grad g can replace grad p as a result of con-
formal mapping. The ralsing of Equation (2.1) to flux level is consequently
performed by exchange of p with g¢

a
(W+V'V*VV”)\P—(B-V)¢=9' (3.5)
with undestanding that ¢ 1s an analytic function
. 152
d do=g =4 -2 g =
ivgrad g = Vg =4 —=¢ =10 (3.6)

Equations (3.5) and (3.2) represent two scalar equations for two unknown
scalar functions ¢ and w while ¢ may already serve as an arbltrary
analytic function encountered during the integration.

4., General solution., Eguation (3.2) can be integrated by a "potential”
¢ because of the commuting of all differentlal operators used

(aiz +V.v—x?) Q=% (Bv)Q=g¢ (4.1)

and the new function ¢@{z,z,t) gets its restriction from Equation (3.5)

(G + Vv =) (5 +V v —n) =@ 0 =g @2

While the second summand is always a square, the first summand would also
be a square of a single operator in the case of perfect flow without any
dissipations. If however dissipations are consldered essential, only a fluid
with equal dissipation coefficients x = v , the "equi-dissipative" fluld,
allows to set

(& +V-v—v) — @ -vr|e=[(5+V~B)v—v)x
x (s + (7 +B-v—v)Q=1 (4.3)
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According to the character of the "conjugate to the pressure” g of equa-

tion (3.6}, the new function ¢ may be written as the operand of four inde-
pendent operators (4.4)

a d 3 9 —
(e + (V= By = vo?) (2 + (V + By —ve) (2 2) (25) @ =0
It promises an integral of four additive contributions

Q = Q1 + 02 + 03+ Q; (4-5)

With a specific adaption to one operator in each part
a \ a
(2 4+ (V=By—vw?) &=0, 2L 0 =0

(& +V+Bv—v) Q=0 220,=0

Going back to the orlginal unknowns 1s necessary for the boundary con-
ditions. Equations (4.1} lead back one step to the flux and stream functions,
while Equations (3.1) add the second step toward the magnetic flelds and
velocity flelds themselves. The application of (4.1) on parts of ¢ dis-
closes thelr specific meaning

[—%—f—(v—B)‘V—'VVﬂ Q=% —¢ =0 (4.7)
[+ (VB v —ve?] Q=1 + 9 =0 (4.8)

Since the only disturbances possible in fields with vanishing divergences
are vortlices, the solutlon ¢, indicates co-rotating vorticity of both velo-
city and magnetic fleld travelling with the speed V — B except for dissi-
pation. In the same manner ¢, is a ccntributlion by contra-rotating vorti-
clty in both fields travelling with the speed. V + B . When the steady flow
state 1s reached, the vorticlty along any line V ~ B or V + B is uniform
except for dilssipation and the flow pattern resembles very much the super-
sonic two-dimensional flow (Fig. 1). %he time dependent terms 1n the above
equations are very useful in indlcating the directlons in which to employ
the two familles of waves starting at the body contour. Playing with this
portion of the solution reveals only {slender) bodies without angle of atvtack
to have nelther a sink nor a source of magnetic flux inside the bedy. No
pressures are created and the 1ift is always zerc. But thils is only the
timid approach to studylng 1ift. Pressures result from the solution §, and
¢, representing complex analytlical functions of 2z respertively of »

(4.6)

While reducing ¢, and ¢, to the flux and stream functions accoring to
Equations (4.1), it is always allowable to omlt the last term in the operator
of the first equation (4.1), since analytic “unctions ha no dissipative
contributicns ) 5

% =B-50 Y= (5 + V)0 (4.9)

a , :
9 = B0, Py = ('gg + 'V) 04 (4.10)
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For the final steady flow state the relations between the flux and the
stream disturbance are even closer without the first terms for the stream

funeti d = 9 - —
unction Py = Vo7 0y = (VE; + V@_}) Qs (2) = VO (4.11)
a = 9 - F5) ’
@ = B-v0 = (B 5 +8] 0 (2) = B, (+.12)
In the steady state the complex potentials are simply proportional

B
%=+ (4.13)

The velocities derived from these potentials have the same ratio

B
Z’34 Z_V‘U;M (414)

The singularities from these disturbances are normally vortices hidden
inslide the body and represent outside of the body the circulatory motion or

¥ig, 1

magnetic field responsible for the 1ift. Both the flow and the magnetic
field are not allowed to show sinks or sources, but a complex multiplier on
one potential as in Equation (4.13) intermixes circulations and sources.
The result shown in Fig. 2 1s that the famlliar circulation of the velocity
field would change into a circulation plus a sink for the magnetic field.

If we reject the solutions ¢, and ¢, except for parallel fields §y and
B , because of the unaccountable sink strength, the timid approach to study-
ing 1ift would be perfect. The real conclusion is to combine the flux sur-
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plus in any solution ¢, and ¢, created by finite angle of attack with the
flux sink of ¢, and @, , and to get 1ift, or at least circulation control-
led by the angle of attack, Pig. 3 and 4 are prepared to help in finding

Fig. 2

the flux surplus Ay, according to angle of attack. With the help of the
fishbone pattern inside the body of Mig.l in Fig.3, starting at the leading
edge of the body, the bookkeeping of the magnetic flux for any body shape
is simple. At zero angle of attack the surplus is zero, the horizontal to
vertical slze relations are taken from the vector diagram V , B to demon-
strate that 2y horizontally corresponds to B, vertically {Fig.4). The
flux through any horizontal line unit is also B, . The result for a chord
¢ and an angie B downward amounts to

Agra = ¢B,f ‘%" e (4.15)
v

With the same coordinates lined with x parallel to V the ratio 7/F
is changing the velocity circulastion I° into the magnetic cireulation g
and the magnetlic source strength §

. E Bx—i‘B 416
J4iS§ =2 T=2g T (4.16)

A source strength compensating the surplus of filux in Eguation (4.15)
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leads to the circulation I

2Ve
I ="p (4.17)

u

The force created by circulation in the combined hydromagnetic fleld is

composed of the 1lifting force ¢JT and the Lorentz force — {57 . But in-

stead of the expected simple current  indicating the magnetic cilrculation

Fig. 3
around the body, the complex multiplication (4.15) creates .7 = T? . The
result is , 7 BE
Pt - (P2 —ar (120 )

The resulting force » 1s indeed a slde force in the manner of the hydro-
dynamic 1ift, but it is reduced by the factor 1 — (5/¥)2 which indicates
vanishing 1i1ft at movements wilth Alfvén speed and a 1ift reversal for sub-

Alfvénic speeds that 1s to say too strong magnetic flelds.

892" °39y%yl

w

g ASef

— = V+B\
L‘\c\__; V-8

Fig. 4
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Concerning the generalized Kutta-Zhukovskil condition, the case of non-
alined flelds V and p seems quite like supersonic flow, where the leading
and the trailing edge may help to define the 1ift with precision by being
sharpened, while the angle of attack is in complete control of the cilrcu-
lation.

5. MNovement parsllel to magnetio field, While the Kutta-Zhukovskii prob-
lem is seen to disappear as such, when the main magnetic field is under a
finite angle with respect to the flow, the alined motion with (or against}
the direction of the magnetic lines 1s an exception, in which the two vorti-
city strips starting at the body surface of Fig.l degenerate to a single
streamline behind or in front of the body. The potential flow disturbance
according to the combined solutions ¢, and ¢, makes the magnetlec lines
colncide with the steady-state streamlines. Thus the problem in the large
is exactly the familiar hydrodynamic problem and after it 1is solved, its
streamlines are also used as magnetic lines. Only the vanishing imperfec-
tions by viscosity and by resistivity must be investigated for differences
in the wake regions.

Mathematically the alinement of both the undisturbed velocity V¥V and the
magnetic field p with the x-axis 1is of not much lmmediate consequence.
The general solution of Equation (4.3) still has too many different terms

(v =m0 =0 G

If, however, the steady flow 1s studled with a semi-perfect fluid in
which either the electrlc resistivity or the viscosity is zero, one factor

2 will be found separable

ax
R [ | E A S (5.2)
or (520 — ) (V)]0 =a  wor v (5.3)

Splitting the first particular solutions @, and ¢, between these factor-
1zed operators as it 1is done for the equi-dissipative fluid, makes the second
one @, uninteresting, while the first one ¢, has not }V — B but a new
convective velocity (¥ - 5 )/V modifying the dissipation of vorticity.

This new convective velocity joins the zero value of ¥ — B but has the
added factor (¥ + B8)/V which doubles for flows with about Alfvén speed and
grows unlimitedly with increasing 5 . Having no immediate check on the non-
steady build-up process, this new velocity resembles a "phase speed” compared
to the "ground speed” ¥ — B of the equi-dissipative fluid.

Both extremes of semi-perfect flulds differ with respect to each other,
when the flux function and the stream function are derived from Equations
(4.1). For vanishing electrical resistivity (superconductivity) there results
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a 3 B
Py = B,@.Qh Py =V—$Ql or (p":_f‘pl for x=0 (5.4)
while for nonviscous fluid it is found that

— B
(ﬂv Bz)_a% _Mva) 01 = ¥ — - 01 = 0 (5.5)

or

Vv
Py =-§'\p1 for v=x0

The result 1s that the superconductive fluld conserves the plane similarity
v w = B : V 1in the boundary layer, while the nonviiscous fluild reverses the
ratlo inside the boundary layer of moving vorticity.

V+B

«-’“ 4 /
/ ROTATING BOUNDARY 'LAYER

N i~y

\/ \/ \ 7 o
" CONTRA-ROTATING ARY LAYER

T
RN

A
—

CO-ROTATING

Flg. 5

Historically it was the superconductive fluid having only one boundary-
layer solutlon ¢, of almost regular behavior on which £he reversal of di-
rection at B = V was first discovered, and 1t was this result that made
the classlcal Kutta-Zhukovskil condition look ridiculous for strong magnetic
fields B > V Dbecause of the forward wake.

6. Boundary conditions. While the linearization does not guarantee any
disclosure of the 1ift controlling elements, the proper application of the
boundary conditions for vanishing imperfections of the fluld on & large
variety of examples 1s still the foundation for any hopes in that direction.
The perfect flow itself determines the circulation by the angle of attack
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between sharp leading and trailing edges only when ¥ and 3B have differ~-
ent directions. At complete alinement the circulation remains primarily
uncontrolled.

SEMI-PERFECT FLUID
k=0 OR »=0

V ——

V>B (SUPER-ALFVENIC) WAKE BEHIND
V<B (SUB-ALFVENIC)  WAKE IN FRONT

Fig. 6

For the sake of complete confidence in the linearized solutions of the
magnetohydrodynamic problem the boundary conditlons of the unalined case for
the equi-dissipative fluld may be discussed first. Fig.l shows that the
upper and the lower slde of the body produce one family of vorticity each
already in the case of perfect flow, where the ncrmal but not the tangential
veloclty at the body contour can be chosen. For being able to prescribe the
tangential velocity independently, the second solution of either corctating
or contrarctating vorticity is the only help available relying on the com-
pleteness of the solutions. Ordinarily the convectlve velocity of the second
wave brands it as an incoming wave with no imformation to carry. BEut one
should never underestimate the power of diffusion. Strong diffusion is able
to make its way agalnst any convective speed though, of course, with rather
steep decay of the vorticity. If, therefore, the boundary of the body de-
mands the second type of vorticity to be present, a thin layer of the second
type 1s able to exist and it has & tangential veloclty according to V — B,
or V + B,, respectively (Fig.5)

One part of the boundary-layer vorticity is able to move in upstream
direction when V ~ B, is negatlve. After running off at the tralling or
even the leading edge of the body, the second vortleclty type finally Joins
its own family as a narrow band of laces added to the former strip in Fig.%.
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Going now back to the case of alined velocity and magnetic fields, the
original strips of perfect flow vortlcity have folded into the body stream-
line but the boundary-layer vorticity and the diffusive cpread of the edges
of the original strips are still avallable (Fig.%). The equi-dissipative
fluid has according to this picture two type of {a) corotating and (b) contra-
rotating vorticity available with the distinguishable convection speeds
V—-—B and V¥V + 5 . One of these types, the corotating one — if + J ani + 2
are ailned - 1s even able to move toward the leading edge of the body and
beyond at sub-Alfvénlic speeds.

VORTICITY: (o) CO- ROTATING
(b) CONTRA-ROTATING

B —s {a)
_L(b)

V— R :

SPEED: () V-B —
(b) v¢B —

(a) Q0700770707777 B (b)

V [E——— V-B V+B

TF

v>B  (SUPER-ALFVENIC) DOUBLE WAKE
V<B (SUB-ALFVENIC) OPPOSITE WAKES

Fig. 7

The semi~perfect flulds have lost one of the -liffusive properties that
make ordinarily the occurance of discontinuities impossible. Since discon-
tinuities are now acceptable, the double boundary layer of the egui-dissi-
pative fluld changes to a single boundary iayer (Fig.7) with the phase velo-
civy (P —-5°)/V . The reversal is agaln at Alfvén speed, but the leading
edge is at sub-Alfvénic speeds the only one adjacent to a wake. " Nonsteady
shedding of votrices may still be expected at the tralling edge, but this
process is not avallable in a factorized differential equation of ¢

7. Conelusion. The two-dimensional magnetohydrodynamic flow past a pro-
file is treated with linearizatilon for only three special ratios between the
imperfections caused by viscosity and electrical resistivity zero, one, and
infinity. Under these circumstances the Kutta-Zhukovskili problem of 1ift
control is not visible in all its details, If it were, not the generallzed
Kutta-Zhukovskii conjecture, but its boundary-layer proof would have been
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presented. In a sense this affair is again in the conjectural state and
sclentists have still the opportunity to risk their reputation with wrong
guesées. Two results are unquestionable: Unalined velocity and magnetic
fields have supersonic character, where a sharp leading and a sharp trailing
edge control the 1ift by their angle of attack. The super-Alfvénic speed
range of the alined filelds has the trailing edge as the 1ift controlling
feature and the trailing edge should be sharp.

The remailning conjecture is about whether the leading and tralling edges
should be sharp or not sharp at sub-Alfvénic speeds, where the wake or, at
least, half the wake extends forward of the body. Some volces are for a
complete reversal of all familiar incompressible or subsonic relations and
ask for a sharp leading edge as the means of 1ift control. One word of
caution may be added, that the former suction force on a sharp trailing edge
supporting separation has changed to a compression force with a blunting
tendency for materlals of finlte strength.
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