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In the first paper for the Hydrodynamlcal Section of this Symposium about 
Analytic Functions in Continuum Mechanics I like to return to an early and 
famous application in classical hydrodynamics made by W.M. Kutta and N.E. 
Zhukovskii while studying the lift force created in two-dimensional flow by 
a perfect fluid. The doubly connected region around a single profile in the 
infinite plane allows for a circulatory motion, the intensity of which is 
not determined by mediate boundary conditions, Nevertheless both these 
authors selected the same condition of smooth flow at the sharp trailing edge 
of either the flat plate (Kutta ) or the special series of sharply edged Zhu- 
kovskii profiles as the proper lift-controlling element for the perfect flow, 
generally known as the “Kutta-Zhukovskil Condition”. The smooth flow, how- 
ever plausible it may appear, can only be a conjecture within the theory of 
perfect fluids and the rigorous proof resulting from flow problems with 
vanishing viscosity was added soon after by the boundary-layer theory of 
L. Prandtl . 

A similar oroblem is found in the modern mannetohsdrodynamics of two 
dimensions with a fluid having two properties to perfection, that is,vanish- 
ing viscosity paired with vanishing electrical resistlvlty while an external 
maanetlc field is spead throwhout the whole flow field. Regarding the dls- 
tribution of two fields, the ieloclty and the magnetic vectors, it-may appear 
that there are also two circulations_around the profile undermined, but, as 
Is easy to conceive, these two circulations are fortunately tied to each 
other and only one combined circulation remains open and Is responsible for 
any side force or lift. Unfortunately the simplified treatment adopted in 
this paper is a linr?arized approach to any lift-controlling elements of the 
body shape. Therefore, the ease to flnd a large variety of illustrative 
examples must be relied upon to hope that the linearized method may illumi- 
nate the problem sufficiently to disclose the magnetohydrodynamical gener- 
alization of the Kutta-Zhukovskll as a similarly plausible conjecture. 

In this paper, a short derivation of the differential equations and final- 
ly their specialization to two-dimensional flow will be given. Immediately 
thereafter, the general solution will be produced just as In my von K&man 
80th Anniversary Lecture, 1961. It is exactly this step that led me to 
belleve that its discussion at this Symposium might be appropriate. After 
showing a couple of examples in figures and pointing out their essential 
features, some conclusions about the lift-controlling elements willbe added. 

* Presented at the International Symposium on Application of the Theory of 
Functions in Continue Mechanics. Tbilisi, September 17 - 23, 1963. 
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1. Ditformtirl l quationr , For the sole purpose of showing the change8 

of the Kutta-Zh~ovskl~ lift problem by electromagnetic interaction, it is 

permissible to take the name magnetohydrodynamics literally by assuming an 

incompressible fluid with a constant electric conductivity value regarded 

as a scalar quantity. The essential and, in the end, the only remaining 

variables of the flow field are the two vectors: the magnetic induction B 

and the fluid velocity V . Eoth these vector fields have lost part oftheir 

generality by the absence of divergences 

div B = 0 

div V = 0 

(1.1) 

(1.2) 

the first equation being a natural property by selecting the magnetic in- 

ductions as the representative of the magnetic field strength, the second 

equation being a mere convenience resulting from the assumption of lncon- 

preaalble fluid. 

The square of both field vectors &is” and apt” indicate in connection 

with the proper constants ln a magnetically permeable and lncompreaslble fluid 

magnetic pressures and hydrodynamic pressures. This property makes them. 

commensurable in the form of the Alfven speed B/Jon compared with the velo- 

city y . To simplify the equations, the density p and the permeablity u 

are set equal to unity. Thus, the kinematic vlacosity is the proper dlssl- 

patlve constant In this system, while for the kinematic “reslstlvity” of 

electrical currents, the reciprocal conductivity has to be divided by the 

permeability p 
k = +P (1.3) 

The influence on the hydrodynamic behavior of the movement across a mag- 

netic field is caused by the So-called Lorentz forces of rlectrodynamicaati 

their value f per unit volume is dependent on the flow of an electric cur- 

rent with the area intensity j 

f=jxB (1.4) 

however, any current reveals itself ‘by the curling magnetic field around it 

according to Equations 

j = ctxl B (W 

In combining these two expressions, the L rentz forces immediately show 

how they are anchored in the magnetic #field stress‘ tensor BiBk - Ifa aikB” 

f~=(curlBf~B=B~~B-‘/:!~B~ (W 

These forces enter the hydrodynamic equation 

f-gradpf, =z+V.vV-~y~+v (4.7) 

The magnetic pressure p,, the gradient of which is visible in the last 

term of Equations (1.6),offers a summation with the static pressure P,, to 

the combined pressure p as indicated 
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p = ph -k pm = ph + ‘I, B2 
the gradient of which is simply 

(1.8) 

- gradp = (4 3-V-v - vo2)V - (B*YT~) B (1.9) 

In the absence of imposed electric fields all currents j are caused by 

induction in the fluid moving across the magnetic field or vice versa. Closed 

currents are already assured when firstly the curl of the inducted electric 

field X,, is used* 

al3 
Curl I?;= curl (V x B) - z 

and secondly the electric reslstivlty x of the fluid is a constant 

curl Eh= x curl j = curl.(V x B) - ?a; (1.11) 

(1.10) 

Avoiding again the explicit appearance of the currents or the electric 

field, a relation between the magnetic field and the velocity field results 

out of Equation (1.11) combined with (1.5) 

xcurl curlB = curl (V x B) - g (1.12) 

After the usual transformation of all double cross products into two terms 

of dot products, while considering that all divergences vanish according to 

Equations (1.1) and (1.2), the same relation can be written 

- xv2B = B.qV-V.vB -F (1.13) 

All differential operations except one are carried out on the magnetic 

field. Two operator packages In parentheses show this fact more clearly 

(G + v.~ - ‘)(, vp) B - (B-v) V = 0 (1.14) 

This final form of electromagnetic equation has a strange resemblance to 

the final hydrodynamic equation (1.9). The third terms of the large opera- 

tors differ only by their diffusion coefficients which are the vfscosity v 

In hydrodynamics and the reslstivity x In electronagnetlsm. If such a 

difference, which of course disappears for perfect fluids, should cause too 

much trouble, there is always the possibility of finding a first solution 

for the fluid with v - x or the "equi-dissipative" fluid. 

2, Llnauliratlon, Any differential operator par.enthesls used in the 
final equations (1.9) and (1.11)) contains a term having one of the unknown 

field vectors as a coefficient, as a reminder of the nonlinearity of both 

relations. In these terms lies the actual difficulty of solving the complete 

* The invariant field Ei, is related to the Cartesian 4,. as follows: 

e to = E,. +vxg 
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problem by finding particular solutions. However, such an approach can be 

used after linearization of the differential equations for small disturbance 

flows. Since all terms in the operators represent partial differentiations 

with respect to space or time, an undisturbed pattern consisting of a paral- 

lel flow and a parallel magnetic field - though in different directions, if 

preferred - vanishes identically If operated upon regardless of any unknown 

field used inside the operators. Under these circumstances the linearization 

requires the unknown disturbance fields to be always the object of the 

operations, while the field inside the operators may as well be the una- 

dulterated undisturbed one. 

If we designate with the former letters V and B the main fields and 

use for the disturbances v and b 6s small additions to the parallel 

field.s, the operators in equations (1.9) and (1.14) are practically differ- 

ential operators with fixed coefficients in which the field vectors V and 

B are considered to be the values V, and B, sufficiently far away from 

the disturbing body, without being explicitly designated as such by a sub- 

script. This linearization allows the operators to be treated as commuting 

factors as long as they operate on the same field v or b . The new form 

of Equations (1.9) and (1.14) due to linearization is 

( 4 + V. v - yvz) v - (B.v) b =- gradp 

(4 + V.v - 3c YJ’) b - (B-V) v = 0 

The early equations (1.1) and (1.2) adapted to the new symbols for the 

disturbance fields are 

div b = 0, div v = 0 (2.3) 

It is obvious that-these four equations, half of which are scalar equations 

while the other half are vectors with the disturbance function p , have 
enough information to allow the unknown fields tc be determined. 

3. Roduotion to two dimenrionr, Since the best hope of finding solutions 

Is given in the two-dimensional flow, the further treatment of these equations 

is carried out in the complex plane in accord with Kutta and Zhukovskii. 

The first convenience resulting from the reduction to two dimensions is the 

existence of a scalar flux function cp for the magnetic field b and a 

scalar stream function 9 for the velocity field as integrals of Equations 

(2.3). In complex plane s = x + ty with i = x - ty the nabla operator 

Is known to be 
V =2$ 

of any function written in the variables z and E . While a gradient can 

immediately be written in nabla, the relation between flux functlcns or 

stream functions and the vector field parallel to them only requires a multi- 

plier f t to perform a rotation about *PO". The vector fields are, 

therefore, easily related to their flux integrals 
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b=-i2-$cp, v= - iZ-$$ (3.1) 

While Equation (2.2) may be raised to the flux function level 

i 
a 1- V. v - xv2 
at' ) 

tp - (B.v) 9 = 0 (3.2) 

the right-hand side of Equation (2.1) Is not quite suited to this treatment. 

But the vanishing divergences of V and b spotted on the left-hand side 

disclose p to be an analytic function in the whole domain outside the 

body div grad p = 0 (3.31 

If this fact is appreciated, the pressure p must be real part of a com- 
plex “pressure” function TT 

p + iq = x (2, 2, t) (3A) 

Since p and its complex conjugate p carry the same information, it is 
simple to conceive that t grad g can replace grad p as a result of con- 

formal mapping. The raising of Equation (2.1) to flux level Is consequently 

performed by exchange of p with g 

i -$+v*v --y~7’ 1 9--_(Bmv)rp = q (3.5) 

with undestandlng that p Is an analytic function 

div grad q = v2q = 4 s q = 0 (3.6) 

Equations (3.5) and (3.2) represent two scalar equations for two unknown 

scalar functions cp and 9 while 4 may already serve as an arbitrary 

analytic function encountered during the integration. 

4. Qoiaer&l rolution. Equation (3.2) can be integrated by a “potential” 

Q because of the commuting of all differential operators used 

t 
$+v.YJ-XV”) (J=$, (B-v) Q =rp (4.4) 

and the new function Q{s,z,t) gets its restriction from Equation (3.5) 

R -;; + v - v - vp N + +v*v - xv2 ) - (B . es] Q = 4 (4.2) 

While the second s ummand is always a square, the first summand would also 

be 8 square of a single operator in the case of perfect flow without any 

diSSip8tiOtlS. If however dissipations are considered essential, only sfluid 

with equal diSSip8tiOn coefficients I( = v , the%equl-dissipative” fluid, 

allows to set 

[(~+V.V--~~~)~-(B.~)~]Q=[~~+(V-~B).~J-~V~)X 

x ($+(i+W. MY)] Q = ? (4.3) 
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According to the character of the “con&gate to 

tion (3.6), the new function Q may be written as 

pendent operators 

the pressure” p of equa- 

the operand of four inde- 

(4.41 

( +-+(V-B)yvy~~)(++(V+B)q-v+)(2&)(2$+?=0 
It promises an integral of four additive contributions 

Q = Q1 + Qz + Qs + Qe (4.5) 
part 
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With a specific adaption to one operator in each 

( 
&+ (V-BB)~~V~~) Qx = 0, 

(&+(V+B)~o--v2)Qz=O~ 

Going back to the original unknowns is necessary 

ditions. Equations (4.1) lead back one step to the 

2; Q3 =o 
2;Q,=O 

(4.6) 

for the boundary con- 

flux and stream functions, 

while Eqyatlons (3.1) add the second step toward the magnetic fields and 

velocity fields themselves. The application of (4.1) on parts of Q dls- 

closes their specific meaning 

[ 
~f(V-B).~-y~2]Ql=91-~1=0 (4.7) 

[ ~+!V+B).C--VOZ]Q~=W~+'E~ =0 (4.8) 

Since the only disturbances possible in fields with vanishing divergences 

are vortices, the solution Q1 Indicates co-rotating vorticity of both velo- 

city and magnetic field travelllng with the speed V - B except for dissi- 

pat Ion. In the same manner Q2 is a ccntribution by contra-rotating vorti- 

city in both fields travelling with the speed. V + B . When the steady flow 

state is reached, the vortlcity along any line V - B or V + B is uniform 

except for dissipation and the flow pattern resembles very much the super- 
* 

sonic two-dimensional flow (Fig. 1). The time dependent terms in the above 

equatlons are very useful In indicating the directions in which to employ 

the two families of waves starting at the body contour. Playing with this 

portion of the solution reveals only (slender) bodies without angle of attack 

to have neither a sink nor a source of magnetic flux inside the body. No 

pressures are created and the lift is always zero. But this is only the 

timid approach to studying lift. Pressures result from the solution Q3 and 

Q4 representlng complex analytical functions of Z rejpertively of 2 . 

While reducing Q3 and Q4 to the flux and stream functions accoring to 

Equations (4.1), it is always ailowable to omit the last term in the operator 

of the first equation (4.11, since analytic functions ha no dissipative 
1 

contributions 

~3 = B-vQ3, 93 = (& f v*o) v3 (4.9j 
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For the final steady flow state the relations between the flux and the 

stream disturbance are even closer without the first terms for the stream 

function 
9s = V.vQ3 = V; +Vs 

( 1 Qs 6) = TQ, 
(4.11) 

cps = BovQs = 
( 
B $ +g+ Q& =BQ' 

1 
3 (4.12) 

In the steady state the complex potentials are simply proportional 

The velocities derived 

ms=+3 (4.13) 

from these potentials have the same ratio 

4, =Ev~~ (4.14) 
v 

The singularities from these disturbances are normally vortices hidden 

inside the body and represent outside of the body the circulatory motion or 

Pig. 1 

magnetic field responsible for the lift. Both the flow and the magnetic 

field are not allowed to show sinks or sources, but a complex multiplier 

one potential as in Equation (4.13) intermixes circulations and sources. 

on 

The result shown in Fig. 2 is that the familiar circulation of the velocity 

field would change into a circulation plus a sink for the magnetic field. 

If we reject the solutions Q3 and ar except for parallel fields v and 

B , because of the unaccountable sink strength, the timid approach to study- 

ing lift would be perfect. The real conclusion is to combine the flux sur- 



plus In 8ny solution 4, and 4:, created by Finite angle of attack with the 

flux sink of! OS and 4 + a and to get lift, or at least circulation control- 

led by the angle of attack, Fig. 3 and 4 are prepared to help in finding 

Fig. 2 

the flux surplus Avln according to angle of attack. With the help of' the 

fishbone pattern inside the body of Fig.1 in Fig.3, starting at the leading 

edge of the body, the bookkeeping of the magnetic flux for any body shape 

Is simple. At zero angle of attack the surplus is zero, the horizontal to 

vertical size relations are taken from the vector diagram V , B to demcm- 

strate that 2y horizontally corresponds to BY vertically (Vig.J+). The 

flux through any horizontal line unit is also Br . The-result for a chord 

0 and an angie g downward amounts to 

With the same coordinates lined with x parallel to V the ratio i/? 

is changZng the velocity circulation Y into the magnetic circulation J 

and the magnetic source strength S 

A source strength compensating the Surplus of flux in Equation (4.15) 
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leads to the circulation Jo 

r=$?p 
Ii 

The force created by circulation in the combined 

composed of the lifting force tvr and the Lorentz 
stead of the expected simple current J indicating 

(4.17) 

hydromagnetie field is 

force - tBJ . Eut in- 

the magnetic circulation 

Fig. 3 

around the body, the complex multiplication (4.15) creates J = r%. The 

result is 

(4.18) 

The resulting force ,r is indeed a side force in the manner of the hydro- 

dynamic lift, but it is reduced by the factor 1 - (B/V)2 wt.i.ch indicates 

vanishing lift at movements with Alfvin speed and a lift vleversal for sub- 

Alfvenlc speeds that Is to say too strong magnetic fields. 

Fig. 4 
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Concerning the generalized Kusta-Zhukovskii condition, the case of non- 

allned fields V and 3 seems quite like supersonic flow, where the leading 

and the tralllng edge may help to define the lift with precision by being 

sharpened, while the angle of attack is In complete control of the clrcu- 

latlon. 

5. Movement gmrallrl to angnetio field, While the Kutta-Zhukovskii prob- 

lem is seen to disappear as such, when the main magnetic field is under a 

finite angle with respect to the flow, the alined motion with (or against) 

the direction of the magnetic lines is an exception, In which the two vorti- 

city strips starting at the body surface of Fig.1 degenerate to a single 

streamline behind or in front of the body. The potential flow disturbance 

according to the combined solutions Q3 and Qp makes the magnetic lines 

coincide with the steady-state streamlines. Thus the problem in the large 

is exactly the familiar hydrodynamic problem and after it is solved, its 

streamlines are also used as magnetic lines. Only the vanishing lmperfec- 

tlons by viscosity and by resistivity must be investigated for differences 

in the wake regions. 

Mathematically the alinement of both the undisturbed velocity V and the 

magnetic field B with the x-axis is of not much immediate consequence. 

The general solution of Equation (4.3) still has too many different terms 

If, however, the steady flow is studied with a semi-perfect fluid in 

which either the electric resistlvity or the viscosity is zero, one factor 

will be found separable 

or 

[( 
(J/2--u') a -___ --v~2)(v~)]Q =q for X=0 

v iiX 
(5.2) 

I( 

(P - ny a 

V 
7.- 
dx -we)(~$j] Q =I Q for Y - 0 (5.3) 

Splitting the first particular solutions Q1 and Q2 between these factor- 

ized operators as it is done for the equl-dissipative fluid, makes the second 

one Q2 uninteresting, while the first one Q1 has not v - B but a new 

convective velocity (P--B2 )/V modifying the dissipation of vorticity. 

This new convective velocity joins the zero value of V -B but has the 

added factor (V + B)/V which doubles for flows with about Alfven speed and 

grows unlimitedly with increasing S , Having no immediate check on the non- 
steady build-up process, this new velocity resembles a "phase speed" compared 

to the "ground speed" V -B of the equi-dissipative fluid. 

Both extremes of semi-perfect fluids differ with respect to each other, 

when the flux function and the stream function are derived from Equations 

(4.1). For vanlshlng electrical reslstlvlty (superconductivity) thereresults 
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9pl = -+*1 for x= 0 (5.4) 

while for nonviscous fluid it is found that 

i 

(VZ- Bz) ~9 --- -& 
V 63X 1 

Q1 = $)I - +=o (5.5) 

or 

‘PI =& for v=o 

The result is that the superconductive fIu_lci conserves the plane similarity 

cp : 9 = B : V in the boundary layer, while the nori~ii;cous fluid reverses the 
ratio Inside the boundary layer of moving vortlcity. 

CO- ROTATING 

Fig. 5 

Historically it was the superconductive fluid having only one boundary- 

layer solution G1 of almost regular behavior on which &he reversal of di- 

rection at B = V was first discovered, and it was this result that made 

the classical Kutta-Zhukovskii condition look ridiculous for strong magnetic 

fields B > V because of the forward wake. 

6. axmary oonditunr l While the linearization does not guarantee any 

disclosure of the lift controlling elements, the proper application of the 

boundary conditions for vanishing imperfections of the fluid on a large 

variety of examples is still the foundation for any hopes in that direction. 

The perfect flow itself determines the circulation by the angle of attack 
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between sharp leading and trailing edges only when Y and S have differ- 

ent directions. At complete allnement the circulation remains primarily 

uncontrolled. 

SEMI-PERFECT FLUID 
K=o OR v=o 

El- 

V- 

V*B (SUPER-ALfVtNIC) WAKE 6EHlND 
V < 6 (SUBdkFVtNlC) WAIEINFRONF 

Fig. 6 

For the sake of complete confidence in the linearized solutions of the 

magnetohydrodynamic problem the boundary conditions of the unalined case for 

the equi-dissipative fluid may be discussed first. Fig.1 shows that the 

upper and the lower slde of the body produce one family of vorticity each 

already in the case of perfect flow, where the ncrmal but not the tangential 

velocity at the body contour can be chosen. For being able to prescribe the 

tangential velocity Independently, the second solution of either corotating 

or contrarotating vorticlty is the only help available relying on the com- 

pleteness of the solutions. Ordinarily the convective velocity of the second 

wave brands it as an incoming wave with no imformation to carry. But one 

should never underestimate the power of diffusion. Strong diffusion is able 

to make its way against any convective speed though, of course, with rather 

steep decay of the vorticity, Xf, therefore, the boundary of the body de- 

mands the second type of vorticlty to be present, a thin layer of the second 

type is able to exist and it has a tangential velocity according to V -B, 

or V+B,, respectively (Fig.5) 

One part of the boundary-layer vorticity is able to move in upstream 

direction when V - B, is negative. After running off at the trailing or 

even the leading edge of the body, the second vorticity type finally joins 

its own family as a narrow band of laces added to the former strip in Fig.4. 
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Going now back to the case of allncd velocity and magnetic fields, the 

original strips of perfect flow vorticity have fclded into tfitl body stream- 

line but the boundary-layer vorticity and the diffusi~-e cprcad of the edges 

of the original strips are still available (Fig.6). The equi-disyipativc 

fluid has according to this picture two type of (a) corotating arld (b)contra- 

rotating vorticity available with the distinguishable convection speeds 

Y - B and V+-E. One of these types, the corotating one - if + c' an2 +2 

are aiined - is even able to move toward the leading edge cf the body and 

beyond at sub-AlfvGnic speeds. 

\X)RTlCITY: (a) CO- RCXAVNG 
lb) CONTRA-ROTATING 

B- (aitd 
-h_. 

V- 
7-T 

SPEED: (a) V-B - 
(b) V+B - 

B w 

- 
(0) e fb) 

* 

v- -v-8 V+B 

V>B bUPER-ALFVEtNIC) DOIJEM,~~W~A& 
v 43 (suB-ik&~~C) 

The semi-perfect fluids have lost one of the diffusive properties that 

make ordinarily the occurance of discontinuities impossible. Since discon- 

tinuities are now acceptable, the double boundary layer of the equi-dissi- 

pative fluid changes to a single boundary layer (Fig.7) with the phase velo- 

city (P-82)/V . The reversal is again at Alfven speed, but the leading 

edge is at sub-Alfvenic speeds the only one adjacent to a wake. Nonsteady 

shedding of votrices may still be expected at the trailing edge, but this 

process is not available in a factorized differential equation of Q . 

7. Conolurlon. The two-dimensional magnetohydrodynamic flow past a pro- 

file is treated with linearization for only three special ratios between the 

imperfections caused by viscosity and electrical resistivity zero, one, and 

infinity. Under these circumstances the Kutta-Zhukovskii problem of lift 

control is not visible in all its details. If it were, not the generalized 

Kutta-Zhukovskii conjecture, but its boundary-layer proof would have been 
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presented. In a sense this affair is again in the conjectural state and 

scientists have still the opportunity to risk their reputation with wrong 

guesses. Two results are unquestionable: Unalined velocity and magnetic 

fields have supersonic character, where a sharp leading and a sharp trailing 

edge control the lift by their angle of attack. The super-Alfvenic speed 

range of the alined fields has the trailing edge as the lift controlling 

feature and the trailing edge should be sharp. 

The remaining conjecture is about whether the leading and trailing edges 

should be sharp or not sharp at sub-Alfvenic speeds, where the wake or, at 

least, half the wake extends forward of the body. Some voices are for a 

complete reversal of all familiar incompressible or subsonic relations and 

ask for a sharp leading edge as the means of lift control. One word of 

caution may be added, that the former suction force on a sharp trailing edge 

supporting separation has changed to a compression force with a blunting 

tendency for materials of finite strength. 
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